Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center
نویسندگان
چکیده
Powerful data centers are the essential supporting infrastructure for mobile, ubiquitous, and cognitive computing, which are the most popular computing paradigms to utilize all kinds of physical resources and provide various services. To ensure the high quality of services, the performance and cost of a data center is a critical factor. In this paper, we investigate the issue of increasing the resource utilization of data centers to improve their performance and lower the cost. It is an efficient way to increase resource utilization via resource sharing. Technically, server virtualization provides the opportunity to share resources in data centers. However, it also introduces other problems, the primary problem being virtualmachine placement (VMP),which is to choose a proper physicalmachine (PM) to deploy virtual machines (VMs) in runtime. We study the virtual machine placement problem with the target of minimizing the total energy consumption by the running of PMs, which is also an indication of resource utilization and the cost of a data center. Due to themultiple dimensionality of physical resources, there always exists a waste of resources, which results from the imbalanced use ofmulti-dimensional resources. To characterize the multi-dimensional resource usage states of PMs, we present a multi-dimensional space partition model. Based on this model, we then propose a virtual machine placement algorithm EAGLE, which can balance the utilization ofmulti-dimensional resources, reduce the number of running PMs, and thus lower the energy consumption. We also evaluate our proposed balanced algorithm EAGLE via extensive simulations and experiments on real traces. Experimental results show, over the long run, that EAGLE can save as much as 15% more energy than the first fit algorithm. Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Multi-objective Virtual Machine Management in Cloud Data Centers
Cloud Computing has recently emerged as a highly successful alternative information technology paradigm through on-demand resource provisioning and almost perfect reliability. In order to meet the customer demands, Cloud providers are deploying large-scale virtualized data centers consisting of thousands of servers across the world. These data centers require huge amount of electrical energy th...
متن کاملA Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملCommunication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology
By pervasiveness of cloud computing, a colossal amount of applications from gigantic organizations increasingly tend to rely on cloud services. These demands caused a great number of applications in form of couple of virtual machines (VMs) requests to be executed on data centers’ servers. Some of applications are as big as not possible to be processed upon a single VM. Also, there exists severa...
متن کاملVirtual Machine Customization and Task Mapping Architecture for Efficient Allocation of Cloud Data Center Resources
Energy usage of large-scale data centers has become a major concern for cloud providers. There has been an active effort in techniques for the minimization of the energy consumed in the data centers. However, most approaches lack the analysis and application of real cloud backend traces. In existing approaches, the variation of cloud workloads and its effect on the performance of the solutions ...
متن کاملBi-Objective Virtual Machine Placement using Hybrid of Genetic Algorithm and Particle Swarm Optimization in Cloud Data Center
Efficient resource management through the virtual machine placement (VMP) is a great concern in data centers. The Biobjective VPM is a representation of multi-objective combinatorial optimization problem. Energy or cost minimization of cloud data center is highly dependent upon the VMP policy. Allocating the set of virtual machines (VMs) to the set of suitable physical machines (PMs), while con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical and Computer Modelling
دوره 58 شماره
صفحات -
تاریخ انتشار 2013